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1. INTRODUCTION

It is desired to improve upon the ability to describe the behavior of
anisotropic media subjected to large pressures, as is the case for
hypervelocity impact. It is believed that expressing the anisotropic
constitutive relationship in a form that makes use of the deviatoric stress
and strain tensors provides for a better description of anisotropic materials
whose compressibility is permitted to vary with volumetric strain. The
deviatoric stress technique is used routinely in many impact codes for
describing isotropic behavior‘i'3, and is described in many books on
elasticity and plasticity'*'S‘ Anisotropic schemes have also been
developed for various impact codes®~7 which calculate a deviatoric stress.
However, the deviatoric stress is expressed in terms& of a total strain and the
bulk modulus. In a true deviatoric formulation, deviatoric stress is
eXpressed only in terms of deviatoric strain, and compressibility affects only
the equation of state, not the deviatoric stress/strain relation.

An anisotropic formulation is proposed which satisfies the condition of
reducing to Hooke’s Law/Prandtl Reuss Flow Rule when employing the constraint
of constant compressibility and isotropy, but which conveniently allows for
anisotropy and variable compressibility. Additionally, the formulation is
amenable for inclusion into existing impact codes which presently use the
deviatoric stress technique for isotropic materials. A sKeleton coding of the
scheme is provided in Appendix A. The scheme also provides an improved
technique for calculating hydrostatic pressure which is less prone to error
than existing techniques. Finally, it is hoped that the formulation provides
an enhanced physical interpretation on the behavior of anisotropic materials
which might otherwise be lacking.

2. BACKGROUND

The constitutive relationship for any elastic material may be
represented in contracted form as

O = ClJ €J : (1)
where o5 and ¢€; represent the six independent stress and
strain components, and C;; is the modulus matrix. The contracted form of

the constitutive relation is used for the sake of simplicity, but the
tensorial components of the contracted form are defined as follows:

O = (044 Opp 033 023 043 Oyp)

€ = (€49 €pp €33 €p3 €43 Typ)

In general, CiJ may be a function of o, €, é, etc. However, it is
somewhat unwieldy as such, and is sometimes considered to be constructed of
constants, which produces the familiar HooKe’s Law. One reason why the

deficiency of Hooke'’s Law becomes apparent experimentally under large
pressures is that the bulkK modulus of the material is quite different from the

material’s stress free value.

For isotropic materials, this problem has been computationally
1




circumvented by the introduction of the deviatoric stress and strain tensors.
These tensors differ from the absolute stress/strain tensors in that the
normal components of stress and strain are decremented by the average of the
normal stresses and strains respectively. In this way, the deviatoric
quantities represent deviation from a hydrostatic condition, while the
relationship existing between the average stress (negative of pressure) and
average strain (volumetric dilatation) is an equation of state. Since
experimental evidence reveals that the compressibility of many materials
changes under large pressures, the deviatoric formulation suggests that while
the simplicity of Hooke’s Law (constant coefficients) might possibly be
retained for computation of the deviatoric stresses and strains, a more
accurate scalar equation of state should simultaneously be employed to account
for non-linear compressibility effects,

3. ELASTIC DEVIATORIC ANISOTROFPY

While the mathematics of the constant coefficient constitutive
relationship for anisotropic materials is well understood, the casting of
these rules into a deviatoric format is not nearly as straightforward as it is
for isotropic materials. Difficulties arise because of two primary
differences in the behavior of anisotropic materials with respect to that of
isotropic materials: (a) under hydrostatic pressure, strain is not uniform in
all three directions of the material coordinates, and (b) except under
restrictive modulus conditions, deviatoric strain will produce volumetric
dilatation (i.e., two different stress states with the same pressure will
produce different dilatations in the material).

Decomposition of the stress and strain tensors into their hydrostatic and
deviatoric components yields:

(2)

Sy

i
Q
[
t
Q
—

eJ = SJ €J' (3)
where o; are all equal to the components of hydrostatic stress
(0 = (064 + 0Cp + 0©3)/3) {for normal stress components and
equal to zero for the shear stress components. The term €
represents the normal strains due to hydrostatic stress, and are formulated in
Appendix C. One may acquire upon substitution into equation (1):

(sj + 03) = Cij (e5 + €5) (4)

where barred quantities represent conditions resulting from a hydrostatic
pressure, s; and e; are the deviatoric stresses and strains
respectively, and CiJ is the modulus matrix. Unlike the isotropic
materials in which a hydrostatic pressure produces a uniform dilatation in all
three coordinate directions, hydrostatic strain for an anisotropic material is
non-uniform. Therefore, if one defines the deviatoric components of stress
and strain to be the total stress/strain components decremented by an amount
which would result from a hydrostatic stress state, one can conclude (per
condition "a" above) that there is a unique hydrostatic strain component
associated with all three directions in the material coordinates (the
coordinate system which produces no shear coupling). Equation (4) may be




decoupled to give a hydrostatic equation
o] = Cij €j (5)
and a deviatoric relationship void of hydrostatic terms:

For the sake of clear visualization, the formulation will be described for
transverse 1isotropy, though extension to orthotropy is: straightforwarde.
Figure 1 depicts material elements from an anisotropic body whose material
(preferred) coordinate systems differ from the laboratory frame of reference.
The preferred coordinate system is the reference frame in which the
constitutive relation reduces to its most simple form. Figure 2 shows
properties of the preferred transversely isotropic material frame. Mechanical
properties are invariant with respect to reference frame rotations that are
confined to the plane of isotropy. As such, a certain symmetry of mechanical
properties exist in transversely isotropic materials which are absent in
orthotropic materials. The proposed model will be described in the material
(preferred) coordinate system. Solutions of problems in which the laboratory
frame and the material frame do not coincide pose no problem if one first
transforms stress and strain to the material frame (see Appendix B).

Under the influence of a purely hydrostatic stress state (and assuming
the moduli to be constant), there will be a constant ratio between the
anisotropic (longitudinal) strain e€; and the transversely isotropic
planar strain e€p. Defining the ratio in terms of material
compliances Sjj (Where S;; = (i)™ h:

€4 Sii + Esia
Re - : (7)
€2 Sp2 + 542 + 5p3

it 1is seen that this parameter (Kg) reduces to a value of unity
for isotropy, where Sy4 will equal Spp, and Sy, will equal Sp3.

Using the definition that deviatoric stress is that part of the stress
tensor which deviates from the hydrostatic stress condition, one can conclude
that the deviatoric stress has no hydrostatic component

Sy + Sp + 83 = 0 (8)

One may substitute the deviatoric constitutive relation, equation
(6), to acquire

KO e + ep + e3 = 0 ' (9)

where Kg; physically represents the ratio of longitudinal and
transverse stress under conditions of uniform strain (€4 : € = €3),
and is given by

Kg = (10)
Coa *+ Cyp + Cp3
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Figure i. The Preferred Reference Frame of Material Elements May HNot Coincide
With the Laboratory Frame of Reference
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As a result, the sum of the three normal deviatoric strain increments
is not generally zero, but rather equals a deviatoric dilatation (e).
The significance of this term is that a state of stress whose average normal
value is zero can produce volumetric change on an element with respect to that
element's stress free volume.

If one wishes to convert a given elastic strain state (e;) into
the elastic deviators (ej), elastic _deviatoric dilatation (e), and
the hydrostatic strain components (€3) the following nine equations
given below may be used for a transversely isotropic mater‘ial (whose plane of
isotropy is the 2-3 plane):

ei = 61 = Ei (3a)
€o = €p ~ Ea (3b)
€3 = €3 -~ Ea (3¢)
€y = €y (3d)
e€g = €g (3e)
eg = €g (31)
ez ey +ep+ ey (Dilatation of Deviatoric
Strain) (11)
€ = Ke € (Non-uniform hydrostatic
strain) (7)
Koty + €p + €3 = 0 (Assures that deviatoric stress
has no hydrostatic
component) (9)

A convenient solution of this set of equations is given in Appendix
C. Finally, the use of the deviatoric constitutive relation, equation (6)
hinged upon the satisfaction of equation (5). Inverting equation (5) into
compliance form and summing the three equations for normal strain yields upon
reduction:

a:ﬁ(€1+€2+€3‘é) (12)

where K 1is a true material property which will be called the effective
bulKk modulus of the material (it equals the reciprocal of the sum of the nine
normal compliance matrix components), and (¢4 + €p + €3) Iis
the total volumetric dilatation of the material element. This effective
modulus, unlike the bulKk modulus, is independent of deviatoric stress in
anisotropic materials. The bulk modulus reduces to the effective bulKk modulus
only when the deviatoric dilatation e equals zero. This condition occurs
under either of the following conditions: the material is isotropic, or the
locading 1is purely hydrostatic.

It was mentioned previously that the empirical relation between
dilatation and pressure is not a linear one. One advantage of the deviatoric
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formulation lies in the ability to arbitrarily make the hydrostatic relation
non-linear while retaining the linear simplicity of Hooke!'s Law for the
deviatoric portion of the constitutive relation. Though this ad hoc procedure
does not theoretically follow as an extension to Hooke's Law, it does permit
the code user to more flexibly model the empirical behavior of the material.

There are also codes employing the incremental strain approach which use
a formulation employing deviatoric stress, though the formulation can not be
termed deviatoric. The form of the relation used by the HELP code6 is

ijJ
Cij A€J ' i=4,5,6

As =

C Ae - 3K (Ae + Ae_+ Ae ), 1=1,2,3

where K is identified as the bulk modulus which presumably can be made
dependent on dilatation (and therefore hydrostatic stress). In this way, the
formulation may also provide the flexibility of a truly deviatoric
formulation. However, equation (13) is not truly a deviatoric relation, since
the deviatoric stress increment is not related to deviatoric strain increment,
but rather is expressed in terms of the total strain increment. The system of
equations presently proposed, equations (6 and 12), are thus more attractive
in a theoretical sense. Similarly, it has already been pointed out that the
bulk modulus (as opposed to the effective bulk modulus derived in equation
(12)) is functionally dependent on deviatoric stress, and in this sense
equation (13) will exhibit flawed behavior if the deviatoric variation in bulk
modulus is not modeled. Finally, the flexibility afforded in equation (13) by
allowing the bulKk modulus to vary with hydrostatic stress has the disturbing
effect that the resulting sum of the normal stress deviators is not generally
zero, If this interpretation of the HELP algorithm as described in reference
7 is correct, the use of the term stress deviators to describe the left hand
side of equation (13) does not even seem justified.

EPICT use a form similar to equation (13) except that K is defined
in such a way as to force the sum of the normal stress deviators to zero.
This ad hoc procedure will coincidentally mimic the behavior of equation (6),
though the formulation is in error during the subsequent hydrostatic stress
calculation by not accounting for the deviatorically induced dilatation (e).

To see additional advantages afforded by the proposed formulation when
using a code which employs an incremental strain approach, compare the
proposed algorithm specifics with that of the prior formulation used in
HELP®. The proposed formulation taKes strain increments, decomposes them
into hydrostatic and deviatoric components. Equation (6) is used in an
incremental way to update deviatoric stress. If the hydrostatic strain
increments are summed and remembered, equation (12) may be used to evaluate
the hydrostatic stress value directly. If the hydrostatic stress is a
function of volumetric dilatation only, then errors introduced into the
calculation of hydrostatic stress are machine precision dependent, but not
algorithm dependent. That is to say, errors in the calculation of hydrostatic
pressure are insensitive to the size of the hydrostatic strain increment.

On the other hand, an incremental stress formulation liKke that proposed
for HELP® experiences errors which are dependent on hydrostatic strain
increment size (which is proportional to the calculation timestep size), if



variable compressibility is employed. For example, use of equation (13) as
described for materials with variable compressibility requires that some sort
of average compressibility be calculated for the time increment in question.
As shown in Figure 3, the average bulk modulus depends not only on the total
element dilatation, but also on the size of the strain increment (since
dilatation changes with strain increment). Therefore, the accuracy of such a
scheme is limited by the integration step size regardless of machine
precision. Presumably, this problem can be avoided if one replaces the
modulus dilatation product at the end of equation (13) with a Ac term,
where the A¢ term is directly obtainable Knowing the previous and
present cycles’ average stress.

However, many non-linear equations of state that are routinely employed
in impact codes like HELP® show a dependence of hydrostatic pressure on
internal energy. Under such conditions, this dependence of pressure on energy
must effectively be reflected in equation (13) for consistency to be
maintained. However, since internal energy is affected by the work done by
the internal stresses (which include deviatoric stresses), a coupling of
internal energy, pressure, and deviatoric stresses exists. HNo simple means
exists to solve this set of equations simultaneously, and a lengthy iterative
process becomes necessary. Since no mention of such coupling and/or iteration
was made in reference 6, it is believed that none is performed. Thus, it can
be seen that equation (13) suffers many drawbacKs which make its use less
desirable than the proposed method given by equations (6 and 12) in which the
deviatoric relations are free of hydrostatic terms.

In summary, the steps proposed for deducing elastic anisotropic deviators
in equations (6 and 12) follow closely those for isotropic materials in the
following ways: (1) deviatoric stress is expressible totally in terms of
deviatoric strain, and (2) pressure is expressible totally in terms of
dilatations.

The differences from the isotropic formulation may also be noted: (1) the
matrix relating deviatoric stress to deviatoric strain is not diagonal in the
anisotropic case, and (2) the total volumetric dilatation must be modified by
the deviatorically induced dilatation when calculating the pressure.

4. PLASTIC DEVIATORIC ANISOTROFY

The anisotropic equivalent to the Prandti-Reuss flow rule of
plasticity can be similarly cast into a deviatoric form. Stress behavior of
yielding material is governed primarily by the nature of the yield surface,
which defines the allowable stress states of the material and subsequent
plastic flow properties (Appendix D). In general, only a portion of a post-
elastic strain increment (Aejt) contributes to <changing the
stress. That portion is designated the elastic strain increment
(AeJ). The remaining portion of the strain increment 1is designated
the plastic strain increment (AeJP). This decomposition of the
strain increment is governed by two rules: (1) an infinitesimal plastic strain
increment vector must be normal to the yield surface at the stress state under
consideration, and (2) a stress increment vector tending to go outside of the
yield surface can at most move tangentially to the yield surface at the stress
state under consideration.
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Figure 3. Hydrostatic Pressure Calculations Based on Dilatation Increments
Have Their Accuracy Limited by the Size of the Dilatation
Increment.




Because of the linearity of the equations governing the conversion from
absolute elastic strain (eJ-) to deviatoric elastic strain (eJ.
e, eJ-), one 1is assured that by decomposing the elastic strain
increment into any two arbitrary divisions, the sum of the two converted
strain divisions equals the conversion of the strain division sum. This rule
becomes handy for impact code implementation if the two strain divisions are
taken as the total strain increment and the negative of the plastic strain
increment (the sum of which add up to the elastic strain increment). In this
way, the stress changes may be calculated on the assumption that the total
stress increment is elastic. If it can then be determined that yield has been
violated, a fictitious stress may be calculated from the plastic strain
increment, and subtracted from the stress state which is in violation of yield
to give the true stress state.

To see how this is employed in actuality, consider the deviatoric
constitutive relation, equation (6), in which the deviatoric stress increment
is calculated via the product of the modulus and elastic deviatoric strain
increment. The linearity of the deviatoric conversion equations implies, for
plastic deformation, that:

ASi H Cij (AeJt - Aejp) (14)

The deviatoric total strain increment (Aejt) is calculated
with the deviatoric conversion equations, based on the total strain increment.
The plastic deviatoric strain increment (Aejp) can be decomposed
into its total plastic (Aejp) and hydrostatic plastic

(Aejp) components respectively.

The total plastic strain component is necessarily normal to the vyvield
surface, and is given by:

of

Aejp = Al (15)

BO'J

where f is the equation governing the vyield surface, and Al is a

proportionality constant for the yield surface normal (af/acj),
which has been evaluated at the stress state in question. If one assumes an
anisotropic vield condition like Hill's9 in which the yield criterion is
independent of the hydrostatic pressure, then the yield surface normal may be
evaluated with the wuse of the deviatoric stresses (e.g. af/asj).

Similarly, the hydrostatic plastic component represents the three
components of plastic deviatoric dilatation, and can be explicitly calculated
Knowing the elastic and plastic material constants and the same
proportionality constant A)A required above.

As a side note, the usage "plastic dilatation" would seem to imply that
plastic incompressibility doces not hold. This is however not the case.
Recall that eguations (3,7,9 and 1i) were proven valid only for elastic
deformations. The concept of plastic strain was introduced to represent the
difference between the elastic and total strain components. This term
"plastic dilatation" in fact represents a portion of the total dilatation to

10




be subtracted off to yield the proper value of elastic deviatoric dilatation.
The plastic incompressibility relation:

AcsP + AepP + Ae3P - 0 (16)

is still assumed to hold throughout all calculations derived here. Thus,
expressing the plastic deviatoric dilatation term as

_ de ;P
AEP = ——— A\ (17)
dA A

the deviatoric constitutive relation may be expressed, using equations
(14,15, and 17) as

af de P
As =C |aetlt - - N T VN (18)
1 1 J 3s dAa
J .
Notice that the only term in this relationship which_differs from the
isotropic case is the last term involving (der/d)\). This

term is zero for the isotropic case because of the fact that there is no
dilatation as a result of deviatoric stress. Similarly, this term can not
generally be zero for the anisotropic case because equation_ (18) is a
deviatoric stress relationship. The term (der/dA) is
precisely the magnitude required to force the deviator stress to remain in the
T plane (i.e. have no hydrostatic components). The derivation of this
term (dejP/dN) is described in Appendix C.

The quantity AM may be evaluated by taking the scalar product of

equation (18) with (3f/09sy). Because Asy is tangential
to the yield surface and (9f/3s;) is the vyield surface normal,
the scalar product is zero. Similarly the term (deJP/dA) as

derived in Appendix C is of a form identical to that resulting from the purely
hydrostatic stress state_described in equation (7). Thus, it is the case that
the quantity CiJ(der/d)\) is parallel with the hydrostat
vector. If one assumes an anisotropic vyield condition like Hill's9 in
which the yield criterion is independent of the hydrostatic pressure, the

scalar product of CyjldeyPsdnr) and
(ef/3s;) 1s also zero. Thus the value for AA may Dbe
calculated as:
of
CiJ AGJT'
381
AN = (19)
af af
aSi 3SJ'

This expression for AA is of a form identical to that obtained for the
isotropic case, and can be used in equation (18) to calculate the elastic
deviatoric stress increment.

11



Because of the curvature of the yield surface and the fact that Ax
was calculated for the stress state existing at the beginning of the time
cycle, the updated stress state resulting from equation (18) may in fact still
lie slightly outside the yield surface. What is done at this point in both
the existing models and the proposed one is to scale back all the stress
components uniformly until the yield surface is exactly reached. Though this
technique introduces some error on its own, it is believed that the error is
not too great since the components of the increment of stress scale back are
nearly normal to the yield surface in many cases. Also, ways have been
devised by Vavrick and Johnson’ to decrease the magnitude of this error.
Their techniques employ subdivision of the time cycle. However, some
anisotropic formulations use a deviatoric stress formulation in which elastic
deviatoric stresses are defined in the folilowing way

ij
Cij AEJ' , 1=4,5,6

As =

C Ae - 3K (Ae + Ae + Ae ), i=1,2,3

and additional error is introduced as a result. This occurs because the
formulation in equation (13) does not guarantee that the sum of the deviatoric
stresses will equal zero for an anisotropic material, and in fact they will"-
generally not do so. As a result, any scale back of the stresses employed to
meet the yield criterion will include a hydrostatic component. Such
hydrostatic scale bacK violates basic rules of yield surface normality in a
fundamental way. Furthermore, techniques proposed by Vavrick and Johnson
which decrease the error resulting from stress scale-back will not decrease
the amount of hydrostatic stress error introduced into the calculation as the
result of using a formulation liKe that of equation (13).

5. CONCLUSIONS

An anisotropic formulation has been proposed which satisfies the
condition of reducing to HooKe's Law/Frandtl Reuss Flow Rule when employing
the constraint of constant compressibility and isotropy, but which
conveniently allows for anisotropic material properties and variable
compressibility.

The deviatoric stress technique which has been used routinely in the
isotropic impact codes for describing isotropic behavior has been effectively
combined with the anisotropic constitutive relations to produce a truly
deviatoric anisotropic constitutive relation. In this deviatoric formulation,
deviatoric stress is expressed only in terms of deviatoric strain, and
compressibility does not influence the deviatoric relation.

Existing formulations suffer from drawbacks which have been eliminated in
the present formulation. Some of the drawbacks of previous formulations may
be enumerated as follows: (1) workKing with absolute stress and strain offers
no simple way to perform calculations involving variable compressibility, (2)
calculating hydrostatic pressure increments (instead of complete hydrostatic
pressure) can introduce error associated with obtaining and averaging the
tangent bulk modulus over a strain increment (this problem compounded by the
fact that Hugoniot data is usually gathered in the form pressure versus
dilatation, the slope of which is the tangent bulk modulus), and (3) use of a

12




"deviatoric" stress which includes a hydrostatic component will produce error
in the pressure calculation if stresses are scaled back to satisfy the yield
condition.

Additionally, the formulation can be simply coded into existing impact
codes which presently use the deviatoric stress technique for isotropic
materials. Finally, it is hoped that the formulation provides an enhanced
physical interpretation on the behavior of anisotropic materials.

13
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APPENDIX A

SKELETON FORTRAN CODING OF THE DEVIATORIC TRANSVERSELY
ISOTROPIC ELASTIC PLASTIC CONSTITUTIVE RELATION
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In most explicit impact codes, stress is generally computed for a region
of the mesh by providing a subroutine with the strain rates in that region of
the mesh, the stresses in that region of the mesh at a previous time, and a
timestep over which the strain rates act. Though each code’s constitutive
relation routine use their own unique notations, they all generally: (1)
convert the strain rates into deviatoric strain rates, (2) calculate
deviatoric stress increments based on the deviator strain rates and timestep,
and increment the previous stress state by this increment, (3) check
deviatoric stress state for material yielding, (4) modify the deviatoric
stress state to account for plastic flow if necessary, and (5) calculate
pressure based on the volumetric strain, and time increment, generally using a
non-linear equation of state.

The coding required to modify isotropic constitutive subroutines is
provided below, with all variables defined, with hopefully enough additional
comments to clarify where in the old subroutine the new coding should be
substituted. The variable notations used generally conform to those used in
the EPIC code®.
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SUBROUTINE ASTRES (REQUIRED ARGUMENTS)
Anisotropic stress increment formulation:
REVISED February-June 1985: Deviator Anisotropy

REAI, LAMEDA
INCLUDE ‘’'commons.file’

COMMON /ELAST/ SIGK, EPSK

COMMON /YIELD/EPSBAR(1600),BN(3,3),BS(3),CN(3,3),CS(3),MODFLA
DIMENSION STR(6), DFDS(6), GI(6), DE(6), DSIG(6), SIG(6), RSG(6),
& DEDL(6)

LAMBDA = 0.

Generate required anisotropic parameters if they haven’t been generated
already.

le] aaQaaa

aQ aQ

IF (MODFLA .EQ. 0) CALL AGEN

Calculate anisotropic deviator strains based on total strains

Q

CALL DEPS (I, ERDOT, EZDOT, ETDOT, EZTDOT, ERTDOT, ERZDOT,
& DE, DEPSB)

Compute rotation and change in normal stresses because of rotation

SPDT = SPINRZxDTI
DSTRN = 2.xSPDTxSRZ(I)

Obtain deviator stresses

SBAR = (SR(I) + SZ(I) + STI) / 3.
SR1 SR(I) - SBAR

SZ1 SZ(I) - SBAR

STt ST(I} - SBAR

SZTt SZT(I)

SRT! SRT(I)

SRZ1 SRZ(I)

1 1] "

Strength variable SEFF is constant for my {formulation
SEFF = FUM)
Transform stress to LTT frame
CALL THETA (I, TH)
CALL XFORM (SRt ,87Z¢ ,ST! ,8ZT1 ,LSRT! ,LSRZ{,
& SI1G(1),81G{(2),81G(3),S1G(4),SIG{(5),S1G(6),TH)

Calculate stress increment due to element rotation (rsg) in LTT {frame

CALL XFORM (-DSTRN, DSTRN, 0., 0, 0., (SR(I)-SZ(I})xSPDT,
& RSG(1),RSG(2),RSG(3),RS5G(4),RSG(5),RSG(6),TH)
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Calculate trial stress increment (dsig) due to strain changes (de)
in LTT frame

CALL CXE (DE, DSIG)

Lump together strain induced stress (dsig) and rotation induced
stress (rsg)

DO 31 K =14, 6
31 DSIG(K) = DSIG(K) + RSG(K)

Calculate trial stress state
DO 33 K =146
STR(K) = SIG(K) + DSIG(X)
33 CONTINUE

Test for yielding

TERM1 = 0.

TERMZ2 = 0.

DO 35 K =14, 3

DO 34 L =1, 3
34 TERM1 = TERM! + BN(K,L) * STR(K) * STR(L)
35 TERM2 = TERM2 + BS(K) * STR(K+3)xx2

VMISES - SQRT(TERM1/2. + 3xTERM2)
IF(VMISES.LE.SEFF) THEN

Stress is elastic. Transform stress back to RZT frame..

SEFF = VMISES
ICHECK(I) = ©

DEPSBP = 0.
CALL XFORM (STR(1),STR(2),STR(3),STR(4),STR(5),STR(6),
& SRe ,SsZ2 ,sTe2 ,sZTe2 ,SRT2 ,SRZ2,-TH)
GO TO 310
END IF

Yield has occured: Determine ALF, the fraction of strain
that 1is pre-vield.

IF (ICHECK(I) .EQ. 1) THEN
Deformation already plastic... elastic fraction (alf) = 0.

ALF = 0.
ELSE

else must determine elastic fraction (alf) (see Vavrick, Johnson)
ICHECK(I) = 1

TERM1 = O,
TERM2 = 0.
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Q

Q

TERM3
TERM4
TERMS
TERM6
DO 41 1, 3
DO 40 L = K,
IF (K .EQ. L) GOTO 40
TERM! - TERM! - BN(K,L) » (DSIG(K)-DSIG(L))*x2
TERM3 = TERM3 - BN(K,L) * (DSIG(K)-DSIG(L))*(SIG(K)-SIG(L))
TERM5 = TERMS5 - BN(K,L) * (SIG(K)-SIG(L))xx2

40 CONTINUE

noeooo

R wonwn

TERMZ = TERMZ + BS(K) * DSIG(K+3)xx2
TERM4 = TERM4 + BS(K) » DSIG(K+3)xSIG(K+3)
TERM6 = TERM6 + BS(K) ®* SIG(K+3)xx2

41 CONTINUE
AAA - TERMi/2. + 3.xTERM2
BBB = TERM3 + b6.xTERM4
CCC = TERM5/2. + 3#TERM6 - SEFF#x2
ALF = (-BBB + SQRT(BBB*#2 - 4.xAAAxCCC)) / (2. * AAA)
END IF

Calculate transition stress (str) and post elastic strain increment (d
DO 51 K =1, 6

STR(K) = SIG(K) + ALFxDSIG(K)}
51 DE(K) (1. = ALF) = DE(K)

Of this post-elastic strain increment, only that portion normal
to the yield surface is plastic. Equation is

delta (epsilon plastic) = lambda x (df/d(sigma))
where f=constant functionally defines the yield surface
CALL DFDSIG(STR, SEFF, DFDS)
Generate Cij (df/d(sigma)j) vector (otherwise Known as Gi)
CALL CXE(DFDS, GI)
Generate the de/dlambda vector (based on the transition stress str)

SFACTR = STR(1) / SEFF

ETERM : -1.5 » (SIGK-1.) / (2.+SIGK*EPSK) » BN({,2) » SFACTR
DEDL(1) = ETERM » EPSK

DEDL(2) = ETERM

DEDL(3) = ETERM

DEDL(4) = 0.

DEDL(S) = O.

DEDL(6) = 0.

Calculate lambda (happens to equal the equivalent plastic strain)

TERML = 0.
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= 0
DO 54 K = 1, 6
TERMi - TERM! + GI(K) * DE(K)
54 TERMZ = TERM2 + GI(K) ®* DFDS(K)

LAMBDA - TERMi / TERM2

Calculate element dilitation resulting from plastic deviator increment
DEPSBP = -ETERM % (2. + EPSK) ¥ LAMBDA

Since [lambda x (df/do)] is the plastic strain vector, the

elastic part of the post elastic deviator strain vector (LHS) is :

[post elastic strain vector (RHS)] - [lambda x {(df/do)-(de/dlambda)i)

DO 56 K = 1, 6
56 DE(K) = DE(K) - LAMBDA » (DFDS(K) - DEDL(K))

Multiply this elastic part of the post elastic strain increment (de)
by the modulus to find the change in stress after yielding (dsig)

CALL CXE (DE, DSIG)

Add this actual stress change (dsig) to the transition stress (str) in
order to obtain the updated stress (sig)

DO 58 K = 1, 6
58 SIG(K) = STR(K) + DSIG(K)

Because of the linear interpolation along the curved yield surface,
a correction must be made to the stress to place the stress back onto
the yield surface

TERM1 = 0.

TERMe = 0.

DO 60 K = 1, 3

DO 59 L =1, 3
59 TERM1 = TERM! + BN(K,L) * SIG(K) * SIG(L)
60 TERM2 = TERM2 + BS(K) % SIG(K+3)xx2

VMISES - SQRT(TERMi/2. + 3.xTERM2)
Correct stress (sig) to place it back on the yield surface

DO 64 K = 14, 6
64 SIG(K) - SIG(K) ®* SEFF/VMISES

Transform stress back to RZT frame

CALL XFORM (S1G(1),SI1G(2),SI1G(3),SI1G(4),SIG(5),SIG(6),
& SRe ,sZ2z ,sT2 ,8ZT2 ,LSRT2 ,LSRZ2,-TH)

EFFECTIVE PLASTIC STRAIN

EBAR(I} = EBAR(I) + LAMBDA
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¢ Update dilitation from deviator elastic and plastic calculations

c

[

310 EPSBAR(I) = EPSBAR(I) + (DEPSB - DEPSBP)

¢ modify dilitation to account for deviator stresses (for pressure
calculation)

c
c

OO0 o000

Q

Q

U = U + EPSBAR(])

daw

Qin

ode

de + ode + sde + se

The first two terms end up in energy equation as p dV. Second two
terms appear below as sde. :

SRBAR
SZBAR
STBAR
SZTBAR
SRTBAR
SRZBAR

= (SR1 + SR2)

= (8Z1 + SZ2)

= (ST1 + ST?2)
(SZT1 + SZT2)
(SRT1 + SRT2)

= (SRZ1 + SRZ2)

FDVMT=DVDOTxDT1/2.

EDEV =5 x (SRBAR*ERDOT + SZBAR#EZDOT + STBARxETDOT
& + SZTBARXEZTDOT + SRTBARXERTDOT + SRZBAR*ERZDOT)

& x (DVOLI - FDVMT +1.)*DT1

PLASTIC WORK FOR SYSTEM

IF(ICHECK(I).GT.0) THEN
PLAST = PLAST + (SEFF ¥ LAMBDA)VOL(I)

END IF

Calculate sound speed for eventual use in timestep calculation

INTERNAL

ENERGY & PRESSURE (use corrected dilitation for pressure)

NET STRESSES

440 SR(I) = SR2 - PRES - Q
SZ(I) = 8Z2 - PRES - Q
ST(I) = ST2 - PRES - Q
SRZ(1) = SRZ2
SRT(I) = SRT2
SZT(1) = SZT2
RETURN
END
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SUBROUTINE DEPS (I, ERDOT, EZDOT, ETDOT, EZTDOT, ERTDOT, ERZDOT,

& DE, DEPSBT)
o
¢ Calculates the anisotropic deviator strain increment
c

COMMON /ELAST/ SIGK, EPSK

INCLUDE ‘commons.file’

DIMENSION DE(6)
c
¢ Define 6x1 tensorial total strain increment vector (in RZT {frame)
c

10 DER = ERDOT xDTi

DEZ - EZDOT xDTi

DET = ETDOT xDTi

DEZT = EZTDOT xDT1 / 2.

DERT = ERTDOT xDTi / 2.

DERZ = ERZDOT xDT1 / 2.
c
¢ Transform strain increment vector to LTT frame
c

CALL THETA (I, TH)

CALL XFORM(DER ,DEZ ,DET ,DEZT ,DERT ,DERZ,

& DE(1),DE(2),DE(3),DE(4),DE(5),DE(6),TH)

o
¢ Transform into deviator strains, determine depsbt (dilitation caused b
¢ total deviator strains, later to be modified by plastic deviatoric
¢ dilitation)
c

TERM = (SIGK - 1) / (2. + SIGK*EPSK)

DESUM = DE(1) + DE(2) + DE(3) .

DEPSBT = TERM x (EPSK x DESUM ~ (2.+EPSK) * DE(1))
EPST = (DESUM - DEPSBT) / (2. + EPSK)

EPSL = EPSK » EPST

DE(1) = DE(1) - EPSL
DE(2) - DE(2) - EPST
DE(3) = DE(3) - EPST
RETURN

END

(X 3222333233232 2232323 233323233223 232322232223232322332233222232233222223323223222223282,;
SUBROUTINE THETA (I, TH)

c

¢ Calculate orientation of element by any appropriate means

c

RETURN
END

CIEIEIEI6 0TI 60636 060K 0666 06 0606 3606 060606 JE 6606606066 060606 06060606 06 06 0606 0606 0636 060606606 06 06 36 0606 0606 06 06 06 06 06 06 06 06 ¢ %6
SUBROUTINE CXE (EE, SS)

c

¢ Multiplies on axis modulus by vector EE to obtain vector SS

c
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COMMON /YIELD/ EPSBAR(1600),BN(3,3),BS(3),CN(3,3),CS(3),MODFLA
DIMENSION EE(6), SS(6)
DO 201 =14, 3

Ss(Iy = 0.
DO 10 J =14, 3
10 8s(I) = SS(I) + CN(I,J) » EE(J)
20 SS(I+3) = CS(I) x EE(I+3)
RETURN
END

CHE3E36 06 9696 36 J6 96 36 96 36 96 06 96 36 36 6 36 3 36 36 96 96 06 36 36 36 36 36 36 36 36 16 36 36 36 36 36 36 06 36 36 96 36 36 36 36 36 36 36 36 6 36 36 36 36 D6 06 J6 36 36 36 36 36 36 6 36 3¢ 36 %
SUBROUTINE AGEN

(o]

Calculate the on-axis modulus matrix and yield parameters once only

COMMON /ELAST/ SIGK, EPSK

COMMON /ORIENT/ ANGLE, TPARAM(1600)

COMMON /YIELD/ EPSBAR(1600),BN(3,3),BS(3),CN(3,3),CS(3),MODFLA
COMMON/LUS/LULLUP,LUT,LUPR,LUST,LUFAST

DATA LUA /13/

OPEN (LUA, FILE-=’amatl.dat’, STATUS:'old’)
REWIND (LUA)
MODFLA :- 1
WRITE (LUP, 505)
505 FORMAT (//' Calculating Anisotropic Modulus'//)

Engineering Constants: (for trans.-isotropic material)

aOaoaq

Longitudinal Young's Modulus
READ (LUA, %) EL
¢ Transverse Young’s Modulus
READ (LUA, %) ET
¢ Shear Modulus in Longitudinal-Transverse Plane
READ (LUA, %) GLT
¢ Shear modulus in transverse (isotropic) plane
READ (LUA, %) GTT
¢ Bulk Modulus:
READ (LUA, %) FK
¢ Left to calculate: isotropic, LT, and TL Poisson Ratios
VTT = ET/(2.xGTT) - 1.
VLT = .25 + (1.-VTT*EL/(2.xET) - EL/(4.xFK)
VTL = VLT x (ET/EL)

[¢]

Modulus Matrix (transversely isotropic)

DEL = (1 - 2xVLT*VTL - VTTxx2 - 2xVLT*VTL*VTT) / (EL % ETxx2)
= (1 - VTT«x2 ) / (ETxx2 » DEL)

CT = (1 - VTL¥VLT) / (EL * ET * DEL)
= (VLT + VTT%VLT) / (EL % ET % DEL)

CTT = (VTT + VLT*VTL) / (EL * ET % DEL)

CG = GLT

]
3
1"n o
=t
~
=
-3
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o

SLT = -VLT / EL
STT = -VTT / ET
/ (2. % GLT)

SG =
SGI =

1.
ST - STT

¢ Calculate Keps and Ksig (variables EPSK and SIGK respectively)

c

EPSK =

SIGK =

CN({1,1)
CN(1,2)
CN(1,3)
CN(2,2)
CN(2,3)
CN(3,3)
Cs(1)
CS(2)
CS(3)
CN(2,1)
CN(3,2)
CN(3,1)

(SL + 2.«SLT) / (ST + SLT + STT)
(CL + 2xCLT) / (CT + CLT + CTT)

CL
CLT
CLT

CT
CTT

CT

CT - CTT)
¥ CG
¥ CG
CN(1,2)
CN(2,3)
CN(1,3)

~ o U g n nn

[T L o S a ¥

WRITE (LUP, %) ’'Compliance Matrix:?
WRITE (LUP, 10) SL,
WRITE (LUP, 10) SLT, ST,
SLT, STT,
WRITE (LUP, 10) SGI, SG,
WRITE (LUP, 11)

WRITE

(LUP, 10)

SLT,

SLT
STT
ST
SG

WRITE (LUP, x¥) 'Modulus Matrix: ¢
WRITE (LUP, 10) CN(1,1), CN{,2), CN(4,3)
WRITE (LUP, 10) CHN(2,1), CN(2,2),. CHN(2,3)
WRITE (LUP, 10) CN(3,1), CN(3,2), CHN(3,3)
WRITE (LUP, 10) CS(1), CS(2), CS(3)
10 FORMAT (3(E15.7,4X))

o

¢ Read Orientation of anisotropy

o
READ (LUA, %) ANGLE

o

¢ Calculate Yield parameters (bn(i,j) , bs(i))

c

¢ Longitudinal Strength
READ (LUA, %) SIGL
¢ Transverse Strength
READ (LUA, %) SIGT
¢ LT Shear Strength

READ (LUA, x) SIGLT

C

SEFF =

S

BN(1,1) =

BN(2,2)
BN(3,3)

BN(1,2)

IGT

2. ® SEFFxx2 / SIGLxx2
2. ¥ SEFFxx2 / SIGTxx2

= BN(2,2)

-(+BN(1,1)

+ BN(2,2)
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BN(1,3) -(+BN(1,1) - BN(2,2) + BN(3,3)) / 2.

BN(2,3) = ~(-BN(1,1) + BHN(2,2) + BN(3,3)) / 2.
BN(2,4) = BN(4,2)
BN(3,4) = BN(4,3)
BN(3,2) = BHN(2,3)

FACTOR = SIGL / SIGT
TAU2 = SIGT*x2 / (4. - (1./FACTOR#%x2))
BS(1) = SEFFxx2 / (3. * TAU2)
BS(2) = SEFFxx2 / (3. * SIGLTxx2)
BS(3) = BS(2)
WRITE (LUP, i)
WRITE (LUP, %) 'Strength Matrix:
WRITE (LUP, 10) BN(4,1), BN(1,2), BN(4,3)
WRITE (LUP, 10) BN(2,1), BN(2,2), BN(2,3)
WRITE (LUP, 10) BN(3,1), BN(3,2), BN(3,3)
WRITE (LUP, 10) BS(1), BS(2), BS(3)
WRITE (LUP, 11)
11 FORMAT (/)

RETURN
END

C 36 36 36 36 36 36 3 3 36 36 36 36 36 36 I 3 2 36 36 36 IE I I I 36 3 3 3 2 I 36 3 I I I I I I I I I I I I I I I I I I I I I I I I IE I X M I I I I I I K I W 3 X
SUBROUTINE XFORM (U1,U2,U3,U4,U5,U6,P1,P2,P3,P4,P5,P6,TH)

Transforms stresses and strains:

ui : stress or strain prior to transformation (unprimed frame)
pl : stress or strain after transformation (primed frame)

th : CCW angle of transformation (in RZ frame)

QOaaoaaa

COMMON/LUS/LULLUP,LUT,LUPR,LUST,LUFAST

REAL M, N, M2, N2, MN

M = DCOS(TH)
N = DSIN(TH)
M2 = Mx¥x2
N2 - Nxx2
MN = M=*N

(e}

All transformations are tensorial, so stress and strain are the same

P1 = M2xUil + N2xU2 + (2.MN)xU¢6

P2 = N2xU! + M2xy2 - (2.*MN)xU6

P3 = U3

P4 = MxU4 - NxUS

PS = N»xU4 + MxUS

P6 = -(MN)*U1 + (MN)xU2 + (M2-N2)*xU6
o

RETURN

END

CIE NI I DI U0 I 060600 0636 36 06 06 06 06 96 96 06 36 3636 36 36 6 36 36 06 96 96 06 36 0696 36 06 36 36 36 36 36 36 36 36 36 36 36 06 36 36 6 36 96 06 36 36 36 6 36 3¢
SUBROUTINE DFDSIG (S, SEFF, DFDS)
c

¢ Calculates df/d(sigma) for element in question
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COMMON /YIELD/ EPSBAR(1600),BN(3,3),BS(3),CN(3,3),CS(3),MODFLA
DIMENSION S(6), DFDS(6)

TWOS = 2.SEFF

DFDS(1) = (-BN(1,2)%(5(1)-S(2)) - BN(1,3)%(S(1)-S(3))) / TWOS
DFDS(2) ( BN(1,2)%(S(1)-S(2)) - BN(2,3)%(S(2)-S(3))) / TWOS
DFDS(3) ( BN(1,3)%(S(1)-S(3)) + BN(2,3)%(S(2)-S(3))) / TWOS

DFDS(4) = 3.»BS(1)xS(4) / TWOS

DFDS(5) 3.xBS(2)*S(5) / TWOS
DFDS(6) 3.xBS(3)xS(6) / TWOS
RETURN

END
(32 X22 2222222233222 2232322222323 2222288222232 22222 R 222 2 221
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APPENDIX B

THE EFFECT OF MATERIAL FRAME ON ANISOTROPIC COMPUTATIONS
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Material frame is not a consideration in isotropic codes, because the
constitutive relation is identical in all reference frames. As such, doing
the calculations in the laboratory frame of reference is the logical choice.
However, when anisotropy is involved, the material properties are different in
different reference frames. For regular types of anisotropy (e.g. transverse
isotropy, orthotropy, etc.), there are preferred directions in which the
materials constitutive relations reduce to their most simple forms. In
general, this material frame does not coincide with the laboratory frame of
reference. Unfortunately, it is usually the laboratory frame in which system
properties (stress, strain, etc.) are described. Two approaches may thus Dbe
taken to implement anisotropy into the codes: 1) transform laboratory stress
and strain into the material frame, perform constitutive computations in the
material frame, and transform the resulting stresses and strains back into the
laboratory frame, or 2) transform the simple material frame constitutive
relations into the laboratory frame of reference, and perform calculations
with these new laboratory frame constitutive relations.

The following is a comparison of the pertinent relations as they would
appear in both the material and laboratory frame coordinate systems. In Table
B-1, primed values of stress and strain denote values in the laboratory frame,
while unprimed values denote the material frame values. The relationship
between material and laboratory frame stress and strain is

o; = Tij oJ-’ (B-1)

1
-
o

€1 iJ (B-2)
where T.. i1s the appropriate transformation matrix between laboratory
and material coordinate systems. Note that because the contracted stress and
strain notations are being used, the transformation matrix Tij is not

symmetric.

Table B-{ shows the nature of the calculations when done in both the
laboratory and material reference frames. In the Table B-{, the substitution:

of
= 'Pij cj (B-3)
lo
i
has been made for simplicity of transformation, where f is the function
defining the yield surface and 3f/3c. is the vector normal to
the yield surface in the material reference frame. Table B-2 contains the
general form of the terms contained in Table B-i. For calculations done in
the material frame, there is a constant "overhead" penalty of makKing the
initial stress and strain transformatiocns, which does not exist in the
laboratory frame scenerio. However, it can be seen from Table B-i1 that in the
laboratory frame there is penalty of transformation for every calculation
done.

Thus, if anything but the most trivial of calculations are required, then
it computationally pays to first transform stiress and strain to the material
frame, perform the calculations there, and transform bacKk at the conclusion of
the computations.
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Table B-1. Comparison of Governing Equations in the
Material and Laboratory Coordinate Frames

Material Frame Laboratory Frame
Transformation to {ol = [T){o*]} N/A
Desired Frame

{el = [T){e"]} N/A

Elastic Constitutive fol = [C){e} fo'1 = [T1-icirmey
Equation
Yield Equation 2 = (01T [e) (0} £2 = (o1TIMTreI [T (0]
Plastic Strain {AcP] = AM[9]iO] {Ae'P) = AA[T) 1o [T) (0"}

(01T o1 TIC) (A€} to1TmTro1TICI [TI (A}
Plastic Strain A\ - AN =
Parameter (a1 Tre1TICI [9) {0} (o3 TIMTre1TrCI [0 [T (O}
Transformation to {o'1 = [T) 1o} N/A

Original Frame

where:

[ ] denotes a 6x6 matrix,

{ } denotes a 6x1 vector,

the superscript -1 denotes a matrix inverse,

the superscript T denotes a matrix transpose, and

the vectors and matrices used in this table are defined in Table B-2.
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Table B-2. General Forms of Pertinent Orthotropic Terms

(C C C 0 0 0 )
11 12 13
c c c 0 0 0
12 22 a3
C 0 0 0
Constitutive Matrix [C) = 13 23 33
0 0 0 ¢ 0 0
44
0 0 0 0 C 0
55
Lo o0 0 0 0 Cgl

B, B o 0 0 )
11 12 13
B B B 0 0 0
12 22 23
B B B 0 0 0
Yield Normal Matrix [¢] = 1/2 13 23 33
0 0 0 3B 0 0
44
0 0 0 0 3B ]
55
L 0 0 0 0 0 3Bge J
where
Bz = ("Byy ~ Bpp + B33) / 2
Byz = (*Byy + Bpp -~ Bz3) / 2
Bpz = ( Bygy = Bpp =~ B3z) / @
Stress Vector (01T = | o o o o o
11 22 33 23 13 i2
Strain Vector (e1T = [ € € € € €
. 11 22 33 23 13 12
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APPENDIX C

DERIVATION OF GOVERNING RELATIONS
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I. Elastic Strain Decomposition:

For transversely isotropic material, with isotropy in the 2-3 plane, the
decomposition of a given elastic strain state (ei) into the elastic
deviatoric strains (ei). elastic deviatoric dilatation (e), and the
hydrostatic strain components (€;) has been shown to require the
solution of the following nine equations:

€, = €, - € » (3b)
e3 = €3 - ea (3C)
ey = €y {3d)
eg - €g (3e)
eg = €g (31)
g eyt ey + ey (Dilatation of Deviatoric
Strain (11)
51 = Ke Ea (Non-uniform Hydrostatic
Strain) (7)
Kc ey + €p + €3 = 0 (Assures that deviatoric
stress has no hydrostatic
component) (9)

Standard equation reduction techniques may be employed to obtain the
following solution sequence:

- (K - 1)
e = Ke (e1 t €yt 63) - (2 + Ke) €4 (C-1)
(2 + Ko Ke)
- ei+ea+e3-; Kcei+e2+63
€ - z (C-2)
(2+K€) (2+KOK€)

Equations (3) are now directly solvable for eJ.
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II. Derivation of (de;P/dr):

In determining the elastic strain components to be used for the
calculation of stress after yielding, it was found to be convenient to
decompose these elastic components into the total strain increment, and the
negative of the plastic strain increment. The plastic flow relations required
the Knowledge of the term Aejp, which at the time was left only
as (deJP/d)‘)Ax, the quantity A being determined
through other means. The term (der/dX)is acquired by
employing the deviatoric conversion equations (C-4,C-2, C-3, and 3) on the
plastic portion of the strain increment. Again, this is permitted because of
the linearity of the conversion equations, the negative of the plastic strain
increment being nothing more than a decomposed component of the elastic strain
increment.

Employing equation (C-i) and making use of the plastic _
incompressibility relation (16), the dilative quantity AeP is
determined to be: ‘

_ “(Kg - 1)(2 + K¢)
AeP - Ae4P (C-4)
(2 + K5 K¢)

Employing the first order approximation to the plastic flow rule, one
acquires A(—:1P z Ar(3f/2904). Using the relations
of Appendix D under the constraints of a transversely isotropic material, one
can show

£ -3 Byp §4 s
30’1 2

Thus, for the transversely isotropic material in question, the dilative
quantity AeP may be cast completely in terms of available
quantities (excepting A\) as:

_ 3(Kg - 1)(2 + K¢)
AeP - Byp 54 A (C-6)
2(2 + K5 K¢)

Equations (C-2,C-3 and C-6) may then be employed to ascertain the quantity
AesP as

4
_ -3(K -1)B _s €
Ae P - g 1 1 j A (C-7)

4
J 2 (2+K X)) t
. o €

1

As a result of differentiating equation (C-7), the quantity (dEJP/dA)
is readily available for use in equations (i17) and (18).
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APPENDIX D

ANISOTROPIC YIELD AND FLOW RULE RELATIONS
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The theory and computer code implementation of yield€> ?gd plasticity rules
for anisotropic materials has been detailed by others”''’, The theory
extends.the approach of the Von Mises yield criterion, which is used
extensively for isotropic materials. A simple review of the pertinent points
will be done just for clarity. Hill's original statement of the anisotropic
yield criterion was given as:

2F = {1 = E(ca--o3)e + Ci(<73-<71)2 + H(oi-oa)2 +
2 (Loy? + Mog? + Nog?) | _ (D-1)

By making the appropriate substitutions, this criterion was restated by
Vavrick and Johnson as:

£=1 : { .S(B“oi2 + Baaoaa + B33032) + B{,0,0, + By30,05 +

1/2
2 2 2 -
B230203 + 3(Byyoy + BSSOS + BggTg ) ] (D-2)

The vyield function f, when fixed at a value of unity, implies a perfectly
plastic material. Uniform work hardening may be realized by letting the yield
function f take on values greater than unity. The form of equation (D-2)
makes it easy to define the material constants of the B matrix. If for
example, Y; represents the tensile strength of the material in material
direction 1, then considering the simple case of uniaxial tension in the 1
direction, substitution into (D-2) reveals directly that:

By, = 2 £2 / v1,° (D-3)
Similarly, the other constants are generated easily from simple
tension and shear data, or from linear combinations of the other constants.
For transversely isotropic materials such as the ones being considered in this
report, the yield matrix BiJ taKes the form:
(Byy Byp Bjp 0 0 01
Bia Bae B23 0 0 0

Bio Baz Bee 0 0 0
B, : (D-4)

Y 0 0 0 By 0 O
© 0 0 0 Bgg O
L 0 0 0 0 0 Bg)
where:
By, = 2 £2 / ¥,°
By, = 2 £2 / ¥,°
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“Byy / 2

Byj2

Bpz = (Byy -~ 2Bpp) /.2
Byy = £2 / 3 V8
Bgs = £2 / 3 Ysa

Because of the fact that the 2-3 plane is isotropic, the yield criterion
must be independent of rotations in that plane. By evaluating the yield
equation (D-2) under conditions of pure shear in the 2-3 plane, and by then
reevaluating yileld in a coordinate frame rotated by 45 degrees in the
isotropic plane, it can be shown that Y, is constrained for transversely
isotropic materials to be:

Y,2
an = (D-5)
Y 2
[
Yy
For calculations involving the yield surface normal, partial derivatives
are taken on equation (D-2) with respect to each of the nine tensorial stress
components, and evaluated at the stress state in question. Because the yield
equation (D-2) is expressed in terms of a convenient (albeit non-tensorial)
Six dimensional contracted "stress vector" space, it must be realized that
terms like oy in reality represent the sum of two equal valued shear
stresses (e.g. Oy = S(0p3 + 032)). As  such the

partial derivatives with respect to the shear stresses is one half that if
calculated strictly on the basis of equation (D-2).
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SYMBOLS

a primed variable is a quantity whose value is taKen in an arbitrary
laboratory reference frame. Unprimed quantities are those takKken in the
"material coordinate frame" of a transversely isotropic material.

a superscript t denotes that a variable represents a total quantity,
which is composed of an elastic part and a plastic part.

a superscript p denotes that a variable represents a plastic quantity.

a delta before a quantity signifies that the quantity is an increment.
As with all models employing the Cauchy strain tensor, incremental
constitutive relations must be employed with corrections for rotation
in order to maKke the proposed model acceptable for computation of
systems involving large strains.

modulus matrix (6x6) which relates stress components ¢’ to strain
components eJ’. The "material coordinate frame" of a transversely
isotropic material will be defined as the reference frame whose the
modulus matrix (designated without the use of primes) is:

(¢..c_¢c 0 0 0 )
11 12 12
0 0 0
t2 22 23
0
12 23 22
o 0o 0 C 0 0
Hi
0o 0 0o 0 C_0
55
L0 0 0 0 0 cssJ

elastic stress components in contracted notation; indices i1 to 3 are
normal components, whereas 4 to 6 are the shear components 23, 13 and
12 respectively.

elastic strain components in contracted notation; indices { to 3 are
normal components, whereas 4 to 6 are the shear components 23, 13 and
12 respectively.

average stress, Dby definition equal to the negative of the hydrostatic
pressure. '

deviatoric elastic stress components (6 independent). 1In this report,
the term "deviatoric" will imply a deviation from the stress state
resulting from a condition of hydrostatic pressure.

deviatoric elastic strain components (6 independent). In this report,
the term "deviatoric" will imply a deviation from the stirain state
resulting from a condition of hydrostatic pressure. For anisotropic
materials, strain is not uniform under conditions of hydrostatic
pressure (i.e. the three principal components of strain are not
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identical). As a result, the normal deviatoric strain components are
NOT simply the difference between the total strain component and the
average of the normal strain components.

e deviatoric dilatation (ejy+ep+e3). Though dilatation is only a
function of pressure for isotropic materials, dilatation may vary in an
anisotropic material just by varying the deviatoric stress (without
changing the pressure). Thus, this dilatation associated with the
deviatoric stress is is referred to as deviatoric dilatation.

€ strain state resulting from hydrostatic pressure. 'For an isqtropic
material, the three normal "hydrostatic" strains would be equal. This
1s not the case for anisotropic material.

Kc a parameter which represents the ratio of longitudinal to transverse
strain (in the material reference frame) under conditions of
hydrostatic pressure (oy = Op = 03).

Ke a parameter which represents the ratio of longitudinal to transverse
stress (in the material reference frame) under conditions of uniform
strain (€ = €p = €3).

Bf/BOj the vector normal to the yield surface, which is given by the function
f.

af/asj is equivalent to af/acj for a yield criterion like the Von Mises
or Hill, where yielding is not a function of hydrostatic pressure.

AX a proportionality constant between the yield surface normal vector, and
the total plastic strain increment vector, which are parallel.

Yy axial flow stress along the longitudinal material direction (for normal
stresses in the 1 direction).

Yo axial flow stress along the transverse material direction of a
transversely isotropic material (for norma] stresses in the 2 and 3
directions).

Yy shear flow stress in the isotropic (i.e. transverse-tiransverse) plane
of a transversely isotropic material (i.e. for shear stresses in the 2-3
plane); contracted form of Yp3.

Ys shear flow stress in a plane normal to the isotropic plane of a
transversely isotropic material, Known as the longitudinal-transverse
shear strength (i.e. for shear stresses in the 1{-2 and 1-3 planes});
contracted form of Y 3.

E; Youngs modulus in direction 1i.
Gij Shear modulus in i-j plane.
Vij Poisson‘’s ratio in i-j plane.
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